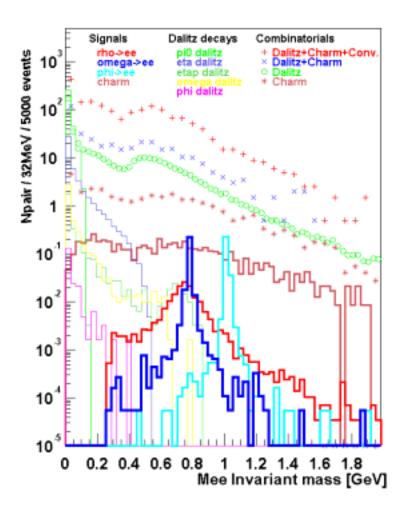


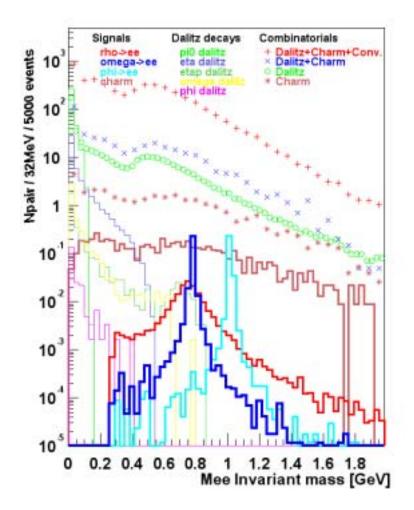
Cocktail Plot (Statistics increased)

Include electrons from conversion at the first layer of Si only.

Statistics of PISA events was 10 times larger than the QM plot.


Thickness of Si: 2% X0

(QM: 1% X0)



Cocktail Plot (QM and now)

Si: 1% X0

Si: 2% X0

Simulation Data

- Particles were generated using Exodus (made by R. Averbeck)
 - →Proton, K⁺, K⁻, π^+ , π^- , π^0 , η , η' , ω , ρ , ϕ , J/ψ,Y Pt < 10GeV/c with power low distribution. |Rapidity| < 1.5
 - → Particle decays were also simulated.
 - \rightarrow Dalitz decays of $\pi 0$, η , η'
 - \rightarrow Vector mesons $(\omega, \rho, \phi, J/\psi, Y)$ decays
- Electrons and positrons from charm decays were generated by PYTHIA and merged to EXODUS output
- Photon conversions were simulated using PISA
 - 4 layers of Silicon (2% X0 for 1 layer), TPC and HBD included. (Note: At QM, 1% X0 is assumed.)

Simulation Parameters

- Central events (dN_charge/dy(y=0) = 650)
- Ratio to dN/dy

$ullet$ π^+ or π^-	0.401	Eta	
----------------------------	-------	-----	--

0.062

- Charm
 - Ncharm/event = Nbinary * σ (p-p charm) / σ (total p-p)
 - • σ (total p-p) = 41 mb, σ (p-p charm) = 648 μ b Nbinary = 1000, thus Ncharm/event = 15.8